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ABSTRACT Test case generation in essence is a many-objective optimization problem, with objectives such
as program statements and branches. Currently, the DynaMOSA algorithm built on the EvoSuite framework
simultaneously searches multiple objectives and eventually produces a test suite with high coverage for
multiple testing criteria. However, its performance is undesirable in searching test cases when there are an
excessive number of objectives. As the software structure becomes increasingly complex and the lines of
program code increase, the high cost of testing limits the application of search-based automatic test case
generation technology for software testing. To generate test cases with high coverage within a limited time,
this paper proposes PCA-DynaMOSA to overcome the shortcomings of DynaMOSA, and the improvement
in the proposed algorithm is due to dimensionality reduction. To carry out the experiments, 49 projects
or 110 classes were selected from the SF110 benchmarking dataset according to the complexity and the
number of objectives of the classes under test. The experimental results indicate that PCA-DynaMOSA
outperforms DynaMOSA in generating test cases on most projects in terms of line, branch, mutation, and
multi-criteria coverage. Moreover, it achieves higher or equivalent coverage and offers improved test case
generation performance.

INDEX TERMS Test case generation, many-objective optimization, EvoSuite, DynaMOSA, PCA.

I. INTRODUCTION
Traditional software testing relies heavily on themanual work
of testers [1], [2]. In particular, it requires a series of inputs
from the tester to define software functions and examines
the validity of the corresponding outputs, while the internal
logic of the software remains unknown. Consequently, such
testing is highly subjective and inaccurate, and unstable. This
kind of software testing has a long cycle and incurs high
costs, accounting for a large proportion of the investment
in software research and development [3], [4]. Automated
software testing is therefore of great significance for the
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development of software technology, as it has the potential
to considerably shorten software research-and-development
cycles, lower expenditures, increase user confidence, and
improve software reliability [5]. A complete test suite should
cover all scenario in codes to the greatest extent when the pro-
gram is running. In this way, software functions can be suffi-
ciently validated, reducing the flaws of manual testing [6].

In recent years, applications of bio-inspired heuris-
tic search algorithms in NP-hard optimization problems
have been widely investigated [7]. Compared with random
approaches, heuristic search algorithms show strong abil-
ities in searching for optimal solutions. Through continu-
ous evolution and guidance by fitness functions, global and
local searches can be conducted in a solution space to find
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an optimal solution. In the field of testing automation, the
automatic test case generation technique based on heuristic
search algorithms has also attracted extensive attention. This
technique evaluates the quality of test cases with two factors:
(1) coverage and (2) the size of the test case. A complete test
case should cover as many scenario existing in the program
code as possible, and an excessively long test case may raise
the subsequent workload of test cases. In essence, the search
for test cases with optimal coverage while maintaining a rea-
sonable size of those test cases is an optimization problem.
The combination of the automatic test case generation with
the heuristic search algorithm is apparent. In this study, test
case generation is transformed into a many-objective opti-
mization problem. The branches, statements, and mutations
of code in the software program were selected as the cover-
age objectives. The aim is to generate test cases with high
coverage.

In a many-objective optimization problem with no more
than three objectives, the traditional Pareto-based many-
objective sorting algorithm can be effective. Regarding the
problem of test case generation, there are dozens or hundreds
of coverage objectives in a single class, and so it is less
likely that Pareto-based techniques would produce optimal
solutions [3]. In this study, an improved many-objective opti-
mization algorithm for test case generation based on dimen-
sionality reduction is proposed. It is capable of decompos-
ing objectives in great quantity and preserving the dominant
objectives. In this way, the performance of the algorithm in
generating high-coverage test cases is improved.

Principal component analysis (PCA) was used to perform
dimensionality reduction for excessive objectives in a test
case generation problem. PCA decompose a large numbers
of objectives into a small number of objectives that contain
the essential information. Thus, test cases with high coverage
are generated efficiently.

The rest of the paper is organized as follows. In Section 2,
the studies related to search-based test case generation
are presented. Section 3 introduces the test case genera-
tion problem as a many-objective optimization problem.
Section 4 describes the proposed many-objective search algo-
rithm with dimensionality reduction for the automatic gen-
eration of test cases. In Section 5, the experiment setup
is described and the results analyzed. Finally, the conclu-
sions and recommendations for future research are given in
Section 6.

II. RELATED STUDIES
As heuristic search algorithms are applied and validated
in more fields, researchers have begun to apply them to
automatic test case generation. The whole suite method
was introduced and built on the EvoSuite framework [8].
Fraser et al. converted the problem of test case generation
into a many-objective optimization problem with a weighted-
sum method that obtains its total fitness value by summing
the fitness of all coverage objectives. This method resolves
many problems in single-objective search-based test case

generation, including dependency among objective branches,
different searching difficulties of different branches, and
search resource waste caused by repetitive test cases cover-
ing the same objective. Zhang and Li [9] proposed an auto-
matic test case generation technique using a many-objective
longicorn beetle search algorithm. A total path similarity was
designed from the perspective of multiple paths for the target
path group of program code. On this basis, test data capable of
simultaneously satisfying the requirements of multiple target
paths were generated, thus reducing iterations and shortening
the time required. Sahin et al. [10] proposed a full test suite
generation method using the archive-based multi-criteria arti-
ficial bee colony algorithm. It unifies fitness functions of
diverse coverage criteria to simultaneously optimize multi-
criteria objectives. In addition, the efficiency of the test case
generation algorithm was improved using the archive-based
method. During many-objective optimization, a weighted-
summethod, the same as used in the whole suite method, was
adopted to simultaneously optimize the covering objectives.

Although weighted-sum methods such as whole suite can
be more effective than the traditional ways to search a single
objective, the convergence to the optimal solution was diffi-
cult for test case generation in non-convex search space [11].
Based on the whole suite method, Panichella et al. proposed
a many-objective genetic algorithm with preference ordering,
called MOSA [12]. For test case generation, the goal of the
search algorithm was not to achieve population diversity but
to obtain individuals with fitness equal to zero. Thus, the
strategy of preferring individuals having fitness values close
to zero was reasonable. Yao [13] combined an infeasible path
detection method based on conditional statement correlations
with the improved many-objective genetic algorithm to gen-
erate test cases. Such a method ensures testing adequacy and
reduces redundant test cases.

The major issue of the search-based many-objective auto-
matic test case generation techniques is low efficiency
in generating test cases with high coverage caused by
excessive search objectives. It is therefore important to
improve the search capability of test case generation algo-
rithms in the context of an excessive number of objec-
tives. Panichella et al. [14] proposed DynaMOSA to improve
the search performance of MOSA by dynamically select-
ing targets to be covered. Many covering objectives exist
in the classes under test, and they are dependent on each
other. To be specific, for two adjacent branches in the same
method of the same class under test, one branch cannot be
reached until the previous branch has been executed, which
is decided by the execution sequence from top to bottom of
the program code. Other objectives depend on the covering
objectives (branches) in the dominant position. Thus, in the
DynaMOSA algorithm, only covering objectives in the dom-
inant position are searched in a control dependency graph of
the class under test. The objectives can be removed from this
graph only when they are covered. By dynamically selecting
covering objectives, the number of objectives to be searched
by the many-objective algorithm can be reduced to improve
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the search performance of the algorithm. Subsequently, a
multi-criteria strategy built on DynaMOSA was proposed by
Panichella et al. [15]. Covering objectives of diverse cover-
age criteria can be optimized at the same time, and, in the
optimization process, a set of objectives from different cov-
erage criteria (branch coverage, line coverage, etc.) can be
searched simultaneously. In this way, test cases with higher
overall coverage can be generated. Recently, search-based
test case generation has been improved for its non-functional
attributes. For example, aDynaMOSA [16] was proposed by
Grano et al., with both execution time and memory consump-
tion of test cases as additional objectives to be optimized by
the algorithm.

Currently, automatic test case generation based on many-
objective optimization is still a novel research direction.
Relevant studies are scarce, and in most of these studies,
multiple objectives are aggregated into a single objective for
search. In this field, DynaMOSA proposed by Panichella is
the most advanced search-basedmany-objective optimization
algorithm for automatic test case generation. Although the
dynamic selection of objectives leads to a reduction in the
number of objectives for search, more objectives need to be
searched as the program code becomes increasingly com-
plex, resulting in a decline in the search performance of the
algorithm. Further study is therefore required to determine
how to improve the search performance of many-objective
optimization algorithms for test case generation in the context
of excessive coverage objectives.

III. TEST CASE GENERATION PROBLEM
The test case generation problem is to determine a test suite
composed of a set of unit tests for the program under test.
Each test case includes a series of different test statements.
Running results produced by the unit tests invoking the pro-
gram are passed to a test oracle to verify the correctness
of the outputs. In automatic white-box test case generation,
however, no test oracle is provided. Thus, it cannot be deter-
minedwhether the running output is consistent with the actual
output based on the function of the program unless man-
ual adjustments by programmers are made [17]. The key to
automatic test case generation is therefore to generate the
fewest tests and produce test cases with the maximum testing
coverage.

The generation of test cases needs to satisfy two conditions.
First, the number of test statements in a test case should be
small. During software testing, the test oracle needs to be
manually created for test cases. If the test cases are lengthy,
redundant, and hard to understand, the manual cost will be
increased during the creation of the test oracle, and the testing
cycle will also be extended. Thus, the fewer the test state-
ments included in a test case, the better the generated test
suite will be overall. Second, the maximum testing coverage
of the objectives should be obtained. For a test case genera-
tion problem, the testing coverage is raised for the purpose
of evaluating whether the current test case has been used
to sufficiently test the class under test. A test suite with a

higher testing coverage can be used to test the program more
robustly. Some important concepts related to the test case
generation problem are described below.

A. CONTROL FLOW GRAPH
The control flow graph (CFG) describes the execution proce-
dures of a program. It depicts all paths that may be traversed
during program execution. The calculations of various cover-
age objectives are formulated with such a graph.

B. TEST SUITE AND TEST CASES
A test suite is a set of test cases generated for the entire
program, and each test case is formed by method call
sequences with variable lengths. For test case generation with
a single-objective search method, a test case is generated for
each objective, and all generated test cases are combined to
form a test suite for testing the entire program. With regard
to test case generation with a many-objective search method,
the test cases are no longer searched for a single objective;
rather, all objectives that should be covered are simultane-
ously searched, and the test case eventually obtained may
cover single or multiple objectives.

C. OBJECTIVES TO BE COVERED
The adequacy of the test cases for a given program can be
described with various coverage criteria, such as line cover-
age, branch coverage, mutation coverage, method coverage,
etc. The coverage criteria used in this study are line, branch,
and mutation coverage.

D. BRANCH COVERAGE
‘‘Branch’’ refers to the decision statements (e.g., if andwhile)
in a program. In the CFG, they are nodes with at least two
outgoing edges. The outgoing edges of branch nodes are
branches. Therefore, a branch node may possess multiple
branches. The coverage of a test case t to a branch can be
represented by the following fitness formula:

fB(t) = al(bi, t)+ d(bi, t) (1)

where al(bi, t) stands for the distance from the branch exe-
cuted by the test case t to the objective branch to be covered.
It is equal to the number of control dependencies or edges
between branch nodes in the CFG. Moreover, d(bi, t) is the
branch distance, which can be calculated by the following
formula:

d(b, t) =


0 if branch has been covered
Dmin(t∈T ,b)

Dmin(t∈T ,b)+1 if current branch has been

excuted twice by the test case
1 other

(2)

where Dmin(t ∈ T , b) is the minimized non-normalized
distance. It is executed twice, because a decision statement
has two possible situations. The shortest branch distance is
selected from the execution.
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E. LINE COVERAGE
Each node in the CFG of a program is the bytecode of a par-
ticular line. The line coverage of test case t can be expressed
in the following fitness formula:

fL(t) = al(si, t)+ d(b(si), t) (3)

where al(si, t) is the distance between statements; d(b(si), t)
refers to the distance from the current branch executed by the
test case t to the branch closest to the current statement.

F. MUTATION COVERAGE
Mutants are obtained by applying a set of mutation operators
or introducing minor changes or human errors to the source
code. In other words, they are mutated programs obtained by
modifying a node via a selected mutation operator in the CFG
of the source program. The mutation operators used in this
study are ReplaceVariable, InsertUnaryOperator, Replace-
Constant, and ReplaceArithmeticOperator. By executing the
test case in mutated and original programs, different exe-
cution results can be compared. Based on the results, one
can determine whether the mutants are killed. The mutation
coverage of test case t is represented by the following fitness
formula:

fM(t) = al(mi, t)+ d(b(mi), t)+ di(mi, t)+ dp(mi, t) (4)

where al(mi, t) is the distance from the statement node exe-
cuted by the test case t to the mutated node; d(b(mi), t) repre-
sents the normalized branch distance of themutated node; and
di(mi, t) and dp(mi, t) stand for the infection status distance
and transmission distance, respectively.

G. MULTI-OBJECTIVE TEST CASE GENERATION
In test case generation, two conditions are taken into account:
the fewest statements in a test case and the maximum cov-
erage for all objectives. Moreover, various coverage crite-
ria can be utilized to improve the overall testing adequacy.
Each coverage criterion contains many concrete optimization
objectives. Therefore, the test case generation problem can be
transformed into a many-objective optimization problem.

If the program under test has a total m objectives to be
covered, comprising sB objectives for branch coverage, sL
objectives for line coverage, and sM objectives for mutation
coverage, then m = sB + sL + sM . For a test suite T =
{t1, t2, · · · , tn}, the included test cases are variable. The goal
is to minimize the fitness value of all m objectives:

min fB,i(t)(i = 1, 2, · · · , sB)
min fL,j(t)(j = 1, 2, · · · , sL)
min fM ,k (t)(k = 1, 2, · · · , sM )

(5)

IV. MANY-OBJECTIVE TEST CASE GENERATION
ALGORITHM USING PRINCIPAL COMPONENT ANALYSIS
For the multi-criteria many-objective test case generation
problem, there exist dozens or even hundreds of coverage
objectives in each class under test, which poses a signifi-
cant challenge to the search performance of the algorithm.

DynaMOSA is a many-objective search-based test case gen-
eration algorithm based on NSGA-II (non-dominated sorting
genetic algorithm II) for generating test cases that achieve
high coverage for multiple testing criteria while maintain-
ing a good search performance in the context of excessive
objectives. In DynaMOSA, new preference criteria are raised
for test case generation. More weight is put into the test
cases that are closer to the covering objectives, which greatly
improves the efficiency of the test case generation. The main
advantages of DynaMOSA are the novel preference order-
ing method and the dynamic selection of objectives to be
optimized. However, the performance of the DynaMOSA
algorithm rapidly declines as the number of optimization
objectives increases. One reason is that the traditional non-
dominated sorting method is used to acquire dominated
solution sets. Although such an issue can be alleviated to
some degree by preference ordering and dynamic selection
of objectives, it fails to improve the performance of the
Pareto-based sorting (including inadequate selection pressure
and a low convergence rate) under the condition of excessive
objectives.

A. DIMENSIONALITY REDUCTION FOR TEST CASE
GENERATION
The aim of the dimensionality reduction algorithm is to
reduce a large dataset into a small dataset based on certain
dimensionality-reduction criteria through analytical calcula-
tions. For many-objective optimization, it is difficult to search
using traditional Pareto-based algorithms such as NSGA-II
due to the excessive number of objectives that need to be
optimized. The comparison among individuals can be dif-
ficult. Even with many computing resources, no favorable
result set can be obtained. A dimensionality-reduction algo-
rithm can be adopted to reduce the dimensionality of the
problem space and reduce the optimization objectives to a
manageable number, which can improve the problem-solving
and optimization ability of the search algorithm and thus
the efficiency of the test case generation. The feasibility of
applying a dimensionality-reduction method to the search-
based automated test case generation was analyzed from the
following two aspects:

1) MULTIPLE COVERAGE OBJECTIVES ARE COVERED BY THE
SAME TEST CASE
In a test case generation problem, a test case contains multiple
method call sequences. When these method call sequences
are executed in the program under test, they may cover mul-
tiple coverage objectives (e.g., branches, lines) in various
program paths of the tested program. Reducing or eliminat-
ing such objectives may not cause important optimization
information to be lost.

2) CORRELATIONS EXIST AMONG DIFFERENT COVERAGE
OBJECTIVES
The difference between a test case generation problem and
a traditional optimization problem is that, for test case
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generation, the objectives to be optimized are statements or
branches in a program, and there exists a semantic rela-
tionship between these statements or branches, such as the
inclusion or dependency relationships between two decision
statements.

Thus, dimensionality reduction may be appropriate for
these objectives. There are also some tradeoffs with the
dimensionality-reduction method, such as the computing
resources and time consumed by the calculation. In select-
ing and configuring a specific dimensionality-reduction algo-
rithm, major consideration is given to the time consumption
of the algorithm and the number of objectives after dimen-
sionality reduction.

B. PRINCIPAL COMPONENT ANALYSIS ALGORITHM
PCA [18] is an unsupervised dimensionality reduction algo-
rithm. It is mainly intended for analyzing the coverage objec-
tives to be optimized based on the fitness of the existing
objectives. On the premise of no information loss, it elimi-
nates objectives in a large objective set to lower the dimen-
sionality of the test case generation problem. Its advantages
can be described as follows:
• Eliminates repetitive feature information in the objective
space;

• Reduces complexity and improves search performance
of the algorithm; and

• Preserve critical coverage objective.
In PCA, dimensionality reduction of objectives is realized

by transforming data in the original objective space into a
new objective space. The dimensions of the objective space
represent the number of objectives. The selection of vector
directions with high variances as the directions of the coor-
dinate axis is preferred. The greater the variance, the more
important the information contained in the data is. Thus, vari-
ances that satisfy relevant conditions are sorted before each
selection. First, the vector direction of the maximum variance
is selected to be the first coordinate axis direction. Next, the
vector direction that is orthogonal to the first coordinate axis
and that has the largest variance among the remaining vectors
is selected to be the next coordinate axis direction. By repeat-
ing the step above, a new coordinate space can be constructed.
In the course of selection, dimensions with variances equal to
zero are neglected. As a result, dimensionality reduction of
the objective space is achieved. The main steps of PCA are
shown in Figure 1.

C. MAIN PROCEDURES OF PRINCIPAL COMPONENT
ANALYSIS
To generate test cases, PCA was adopted to perform dimen-
sionality reduction for a set of objectives, removing repetitive
feature information and keeping the important components.
Furthermore, the set of reduced objectives was used to carry
out the many-objective sorting of the individuals in the pop-
ulation to guide the search process of the algorithm. In this
way, the problem of performance decline in DynaMOSA
in the context of excessive objectives can be alleviated.

FIGURE 1. Flow Chart of PCA.

Considering that test case generation involves many objec-
tives, dimensionality reduction of all objectives at once
may cause convergence failures, large time consumption,
or poor final results of the dimensionality-reduction algo-
rithm. For this reason, in our proposed algorithm, objectives
were grouped, with each group consisting of a certain num-
ber of objectives to dynamically reduce the corresponding
dimensionality. The final set of objectives used to guide the
many-objective search was obtained through the aggregation
of all reduced sets of objectives. The specific number of
groups used in our algorithm was determined by the exper-
iments. The proposed many-objective test case generation
algorithm using PCA, called PCA-DynaMOSA, is presented
in Figure 2 and Algorithm 1.

V. EXPERIMENTAL DESIGN AND RESULTS ANALYSIS
To evaluate the performance of the proposed algorithm, dif-
ferent experiments were designed and conducted. The results
of the experiments are analyzed and compared with the
performance of DynaMOSA.

A. EXPERIMENTAL DESIGN
The experiments were primarily aimed at answering the fol-
lowing research questions (RQs) for multi-criteria many-
objective test case generation:
RQ1. How does group size affect the search performance of

the PCA-DynaMOSA algorithm? How can the specific
number of groups be determined for the algorithm?
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FIGURE 2. Flow chart of PCA for many-objective test case generation.

Algorithm 1 Many-Objective Test Case Generation Algo-
rithm Based on PCA.

Input: Population P, Population size S, Target set M
Output: A test suite T
U∗ = target in M with not control dependencies
t = 0
Pt = RANDOM-POPULATION(S)
archive = UPDATE-ARCHIVE(Pt)
U∗ = UPDATE-TARGETS(U∗,G)
while not (Search_budget_consumed) do

U∗[i] = group(U∗)
UPCA[i] = PCA.run(U∗)
UPCA= Summarize(UPCA[i])
PREFERENCE-SORT(UPCA)
CROWDING-DISTANCE-
ASSIGNMENT(Fd,UPCA)

end while
T <- archive

RQ2. How does the PCA-DynaMOSA algorithm perform in
comparison with DynaMOSA in terms of line cover-
age, branch coverage, and mutation coverage of the
generated test cases?

RQ3. How does the PCA-DynaMOSA algorithm perform in
comparison with DynaMOSA in terms of multi-criteria
total coverage of the generated test cases and search
efficiency of the algorithm? What is the relation-
ship between the algorithm’s search efficiency and the
multi-criteria total coverage of the generated test cases?

1) EVALUATION METRICS
The following evaluation metrics were selected to test and
compare the test case search capabilities of both the original
and the improved algorithms.

a: TESTING COVERAGE
This metric represents the adequacy of the final test suite in
testing the program. It includes the sub-metrics line coverage,
branch coverage, mutation coverage, andmulti-criteria cover-
age. Moreover, the multi-criteria coverage is the coverage of
all objectives (the aggregation of all branches, all lines, and all
mutants) for test case generation. The metrics for calculating
those coverages are as follows:

statement_coverage= Number of covered statements
Total number of statements to be covered

×100%
branch_coverage = Number of covered branches

Total number of branches to be covered
×100%
mutation_coverage = Number of killed mutants

Total number of mutants to be killed
×100%
multicriteria_coverage
=

Number of covered objectives
Total number of objectives to be covered × 100%

(6)

b: SEARCH EFFICIENCY
Using the coverage percentage collected every second
throughout the test case generation, the search efficiency of
an algorithm can be calculated by the following equation:

AUC =

120∑
i=0

[covi + covi+1] ∗1Time

2 ∗ TotalTime
(7)

where covi refers to the percentage of coverage at time i, and
covi+1 refers to the percentage of coverage at time i + 1;
1Time represents the time interval, which is 1 second; Total-
Time is the total running time of an algorithm, which is 120
seconds.

The increase in testing coverage from the original algo-
rithm to the improved algorithm can be calculated using the
following equation:

Increase_rate =
Valueafter − Valuebrfore

Valuebrfore
× 100% (8)

In this study, a proportional change of no more than 0.5%
is considered an insignificant change or no change. There-
fore, projects or classes with an increase rate below 0.5% are
removed when comparing the coverage and search efficiency
of the algorithms.

2) EXPERIMENT SETUP
The proposed algorithm was implemented in the EvoSuite
framework and compared with DynaMOSA. The experi-
ments were conducted on the Windows platform. The setup
for the experimental environment is shown in Table 1.
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TABLE 1. Experimental environment.

3) DATASETS
First, CKJM was used to analyze the complexity of all
projects in the SF110 dataset [19]. Then, projects with high
complexity were selected to verify the performance of the
proposed algorithm.

The SF110 dataset contain 110 statistically representa-
tive open-source Java projects collected from SourceForge.
SourceForge is a popular open-source repository with over
300,000 projects and more than 2 million registered users.
It includes all types of projects. Thus, SF110 is appropriate
for testing the performance of the test case generation algo-
rithms and frameworks. However, due to the large number
of projects and classes in the datasets, experiments using
all of the classes in the datasets may take a long time and
incur high costs. More than 50% of the classes in the SF110
datasets have low program complexity, which means a simple
method call is capable of covering most of the objectives.
CKJM [20], [21], a program that calculates several object-
oriented metrics (e.g., weighted methods per class, depth
of inheritance tree, coupling between object classes, lack of
cohesion in methods, response for a class, and the number of
children) by processing the bytecode of compiled Java files,
was adopted to analyze the complexity of all classes in the
SF110 datasets.

The dataset used in the experiments were selected by the
following procedure. First, the code complexity of all classes
in the SF110 dataset was calculated using the CKJM tool, and
the number of objectives covered in each class was obtained
using the EvoSuite framework. Next, classes under test were
sorted according to their complexity and number of objectives
covered. Projects containing more complex classes with a
greater number of objectives were selected and included in
the final test dataset. Considering very few projects or classes
behave abnormally during the experiment, such projects or
classes were excluded from the experiment. The projects
and the number of classes selected from each project are
presented in Table 2.

Table 2 shows that 49 of the 110 projects in the SF110
datasets were selected. In total, 110 classes served as the
fundamental test data for the experiments.

To compare the performance of PCA-DynaMOSA with
DynaMOSA, the experiments were repeated 10 times for
each test class in the selected datasets. The running results
were averaged for comparison and analysis.

4) PARAMETER SETTINGS
a: PARAMETER SETTINGS FOR THE PROPOSED ALGORITHM
The default parameters for the DynaMOSA algorithm in Evo-
Suite yield a reasonably high performance, which has been

TABLE 2. List of projects and classes under test.

empirically validated by other scholars. To preserve the qual-
ity of DynaMOSA and to ensure a controlled setting for the
experiments, the same parameter settings (shown in Table 3)
were adopted for our proposed algorithm.

TABLE 3. Parameter settings for the many-objective optimization
algorithm.

b: GROUP SETTINGS FOR PCA-DynaMOSA
To select an optimal number of groups in PCA-DynaMOSA,
the number of groups for the experiments was established as
follows (see Table 4).

B. EXPERIMENTAL RESULTS AND ANALYSIS
1) PERFORMANCE OF PCA-DYNAMOSA UNDER DIFFERENT
GROUP SETTINGS (RQ 1)
To determine what group setting of PCA-DynaMOSA pro-
duces the optimal performance in terms of multi-criteria
coverage, 18 classes were randomly selected from the test
dataset. Their mean coverage was obtained for analysis and
to produce the corresponding curves, as presented in Table 5
and Figure 3.

Table 5 and Figure 3 show that different numbers of
objectives in a PCA group have a clear influence on the

85524 VOLUME 10, 2022



D. Li et al.: Automatic Test Case Generation Using Many-Objective Search and PCA

TABLE 4. Group settings for PCA-DynaMOSA.

TABLE 5. Statistics of different numbers of PCA groups∗.

FIGURE 3. Search Performance Curves Generated by Different Numbers
of PCA Groups.

performance of the test case generation. Too many or too
few objectives in each group may lead to poor performance
of the algorithm. For example, the search performance of
PCA60 and PCA5 show no substantial improvements com-
pared with DynaMOSA. If the number of objectives is too
small in each group, the final set of objectives used to
guide the search will barely change. Additionally, comput-
ing resources will have been spent on dimensionality reduc-
tion. In contrast, if the number of objectives is too large in
each group, it becomes difficult for the dimensionality reduc-
tion algorithm to converge, which may lead to a significant
increase in the time consumed by the algorithm. However,
with appropriate parameter settings, PCA can be used to
improve DynaMOSA and significantly raise its search effi-
ciency and test coverage.

Among the data shown in Table 5, the mean coverage and
the mean area under the curve (AUC) value, excluding those
in PCA60 and PCA40, are improved compared with those
of the DynaMOSA algorithm. Moreover, the optimal overall
results are generated by PCA20 and PCA50. More specifi-
cally, PCA20 provides the most satisfactory search perfor-
mance, and PCA50 achieves the highest final coverage ratio.
The search performance of PCA20 is 0.71% higher than that
of PCA50, but the final coverage ratio of PCA50 is just 0.1%
greater than that of PCA20. According to the search perfor-
mance curves, PCA20 (purple) and PCA50 (green) perform
best among the different groupings. However, the search per-
formance of PCA50 is no better than the original DynaMOSA
in the first 60 seconds. On the other hand, the search per-
formance of PCA20 is consistently better than DynaMOSA.
Thus, 20 was selected as the number of objectives in each
group for PCA-DynaMOSA.

2) COVERAGE ACHIEVED FOR EACH PROJECT
(RQS 2 AND 3)
Tables 6 to 8 does not include projects that have the same
coverage result achieved by the algorithms under analysis.
Results that vary by no more than 0.5% are denoted by ‘‘-
‘‘. In addition, the numbers in blue represent results with
significant increases, while those in red represent results with
significant decreases.

a: LINE COVERAGE ACHIEVED FOR EACH PROJECT
The line (statement) coverages of DynaMOSA and
PCA-DynaMOSA are shown in Table 6:

TABLE 6. Mean line coverage achieved for each project.

b: BRANCH COVERAGE ACHIEVED FOR EACH PROJECT
The branch coverages of DynaMOSA and PCA-DynaMOSA
are shown in Table 7.
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TABLE 7. Mean branch coverage achieved for each project.

c: MUTATION COVERAGE ACHIEVED FOR EACH PROJECT
The mutation coverages of DynaMOSA and
PCA-DynaMOSA are shown in Table 8:

TABLE 8. Mean mutation coverage achieved for each project.

Tables 6 to 8 show that the coverage achieved by
PCA-DynaMOSA improves on that of DynaMOSA. The
proposed algorithm achieves equivalent or higher coverage
on most of the projects; coverage is lower on only a few
projects. In comparisonwith DynaMOSA, themean coverage
of PCA-DynaMOSA increased by 3.87% for line, 5.50% for
branch, and 3.75% for mutation.

TABLE 9. Number of projects with better and worse results in multiple
coverage criteria.

Table 9 shows that, compared with DynaMOSA, the cov-
erage achieved by our approach is on average significantly
higher in 32.65% of the classes under test for line, 34.69%
for branch, and 36.73% for mutation. The improvement in the
mutation coverage is the greatest among the three coverage
criteria. In addition, a decrease in coverage is found in less
than 4.08% of the projects. Among the projects for which
our algorithm achieved superior coverage, follow presents
the most significant increases, on average 25.26% for line,
branch, and mutation coverage.

From the results above, it can be concluded that the
PCA-DynaMOSA algorithm has the potential to improve
line, branch, and mutation coverage for multi-criteria test
case generation. Figure 4 shows a comparison of two algo-
rithms in terms of projects under test with a significant
increase or decrease in coverage achieved by the algorithm.
From Figure 4, it is apparent that the proposed algorithm
outperforms DynaMOSA.

FIGURE 4. Comparison of Quantities of ‘‘Better’’ or ‘‘Worse’’∗ Projects
based on Line, Branch, and Mutation Coverage .

A project is a ‘‘better’’ project if the proposed algorithm
shows more than 0.5% of performance increase than the orig-
inal algorithm; a project is a ‘‘worse’’ project if the proposed
algorithm shows worse performance than the original algo-
rithm.

3) MULTI-CRITERIA COVERAGE AND SEARCH
PERFORMANCE ACHIEVED BY PCA-DYNAMOSA (RQ 3)
a: MULTI-CRITERIA COVERAGE RESULT
Table 10 shows a comparison of the results of multi-criteria
coverage between DynaMOSA and PCA-DynaMOSA.
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According to Table 10, the multi-criteria coverage achieved
by PCA-DynaMOSA significantly improves on that of
DynaMOSA. The proposed algorithm achieves equivalent
or higher coverage on all the tested projects, with no
projects showing lower coverage. More specifically, com-
pared with DynaMOSA, the multi-criteria coverage achieved
by our approach is on average significantly higher in
32.65% of the classes under test. The multi-criteria coverages
achieved for the remaining projects was the same as those
achieved by DynaMOSA. The mean multi-criteria coverage
of PCA-DynaMOSA increased by 4.40% in comparison with
that of DynaMOSA.

TABLE 10. Comparison of multi-criteria coverage between DynaMOSA
and PCA-DynaMOSA.

From the results above, it can be concluded that, for multi-
criteria coverage, dimensionality reduction improves the effi-
ciency of many-objective search-based test case generation
without causing the search performance of the algorithm to
decline.

b: SEARCH EFFICIENCY COMPARISON
Table 11 shows a comparison of the search performance of
DynaMOSA and PCA-DynaMOSA. Although the coverage
of testing criteria of the final test suite is important, the search
efficiency of the corresponding algorithm is also crucial. The
AUC [12], a statistical value representing the search effi-
ciency of the test case generation algorithm, is also used
for comparison. An algorithm with high search efficiency
(or AUC value) is preferred, because it has the potential to
produce a test suite with high coverage in a short period.
Table 11 shows that PCA-DynaMOSA achieves a higher

TABLE 11. Search efficiency of DynaMOSA and PCA-DynaMOSA for each
project.

TABLE 12. Number of projects with better and worse results in
multi-criteria coverage and AUC value.

AUC value than DynaMOSA for most projects, with an aver-
age improvement of 1.72%.

Table 12 shows that, compared with DynaMOSA, the AUC
value achieved by PCA-DynaMOSA is on average signifi-
cantly higher in 42.86% of the classes under test. A decrease
in coverage is found in less than 12.24% of the projects. This
demonstrates that the proposed improvements toDynaMOSA
are valid. As the efficiency of the test case generation
algorithm is improved, test cases with high coverage are
efficiently generated.

The correlation between AUC and multi-criteria cover-
age can be observed from Table 12. As the AUC value
increases, the final overall coverage also increases, and vice
versa. Thus, to enhance the coverage of the test cases, the
search performance of the algorithm must be improved.
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FIGURE 5. Comparison of Quantities of ‘‘Better’’ and ‘‘Worse’’ Projects
based on AUC and Multi-Criteria Coverage.

Figure 5 shows the ‘‘better’’ and ‘‘worse’’ projects based on
AUC andmulti-criteria coverage from the perspective of their
quantity.

C. THREATS TO RESEARCH VALIDITY
To reduce the randomness of the results generated by the pro-
posed algorithm, the experiments were repeated 10 times. The
results obtained from the experiments were averaged, and
the mean values were selected for analysis and comparison.
However, this repetition lowered but did not entirely remove
the influence of randomness in the algorithm. Additionally,
a proportional change of no more than 0.5% was consid-
ered an insignificant change or no change. Projects or classes
with an increase rate less than 0.5% were therefore removed
when comparing the coverage and search efficiency of the
algorithms.

Moreover, many parameters may have affected the exper-
imental results. To ensure the validity of the results, the
same parameter settings were used in all the algorithms
under comparison, and all the algorithms were run in the
same framework for controlled experiments. Furthermore,
the datasets selected for the experiments have been widely
used in similar studies. However, they do not contain the most
recent open-source projects. To enhance the generality of the
research findings, both algorithms were evaluated according
to the three most common coverage criteria (line, branch, and
mutation). The effectiveness of the proposed algorithm on
other coverage criteria, such as MC/DC, requires additional
analysis.

VI. CONCLUSION
Traditional Pareto-based many-objective search algorithms
have a limitation of inadequate selection pressure in the con-
text of excessive objectives. For the problem of generating
test cases with high coverage for multiple criteria, there are
dozens or hundreds of coverage objectives in a single class.
In this case, it is less likely that search-based test case gener-
ation algorithms can produce optimal solutions. To solve this
problem, algorithms with stronger search performance when
there is an excessive number of covering objectives should be
selected for test case generation.

In this paper, the PCA-DynaMOSA algorithm is proposed
for multi-criteria test case generation. PCA is adopted to
perform dimensionality reduction for an excessive number of
covering objectives while preserving important information.

The proposed algorithm was experimentally validated on
selected open-source datasets from SF110. The results show
that, compared with DynaMOSA, the coverage achieved by
our approach is on average significantly higher in 32.65% of
the classes under test for line, 34.69% for branch, 36.73%
for mutation, and 32.65% for multi-criteria. In comparison
with DynaMOSA, the mean coverage of PCA-DynaMOSA
increased by 3.87% for line, 5.50% for branch, 3.75% for
mutation, and 4.40% for multi-criteria. In terms of the algo-
rithms’ search efficiency, PCA-DynaMOSA also outper-
forms DynaMOSA and produces a higher AUC value.
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